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Abstract. We integrate the system of non-linear differential equations 1, = 
(-l/t)[exp(x,_, - x k )  +exp(x, -xk+,)]  and study the behaviour of a system of infinitely 
many mass points on the line governed by these differential equations. The results are 
compared with those for the corresponding finite system. 

1. Introduction 

In close connection with the system of non-linear differential equations 

(ik = ak( ai+l - a:-*)  k = l ,  . . . ,  n - 1 ; a o = a n = 0 , n = 2 v  (1.1) 

Moser [ l ]  studied a system composed of h particles obeying 

xk = (- 1 / 2) [exp(xk- 1 - xk + exp(xk - xk+ 1 1 (1 .2) 

( k =  1, .  . . , n ;  xo= -CO, x ~ + ~  = +CO, n =2v),  where xk denotes the position of the kth 
particle. With ak = (1/2) exp[(xk -xki1)/2], (1.1) follows from (1.2). It also follows 
from (1.2) that 

(1.3) i k  = (1/4)[exp(xk-,-xk) -exp(xk -Xk+2) ]  = -au/axk 

with 

From the viewpoint of practical application, studying such a system may seem to 
bear relatively little significance. But theoretically it is still interesting, since it sheds 
some light on the nature of exponential-type dynamical systems [2,3]. 

In this system of n mass points, the force induced between the kth and the ( k  + 2)th 
particles is such that it makes the kth one move left relative to the ( k  + 2)th. And since 
each of the end particles (k = 1,2, n - 1, n) is connected to only one other particle, all 
the particles asymptotically ( t  + *CO) behave as though free, each travelling with a 
certain constant velocity, i.e. 

xk ( t ) - (Y ; t + p t + *CO. ( 1.4) 

In the scattering problem, one is asked to determine the relation among these 
and phases j3; ( k  = 1, .  . . , n ) .  Without knowing any detailed asymptotic velocities 
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structure of the solution, and using only rudimentary properties of its rational character, 
Moser [ 11 derived the following relations: 

P & - P ; - ~ ~ + ~ =  C [-ln4(a,k-a,-21+2)21- C [ - l n 4 ( a ~ - a ; - ~ ~ + ~ ) ~ 1  
v - / + 2 s k s v  1s k s  U-/ 

(1.7) 
where 1 = 1, .  . . , v and A k  (A,  <. . . < A 2 <  A , ,  A /  = -A,-r+l are the eigenvalues of the 
relevant ( n  x n )  Jacobi matrix. 

In these relations, (1.5) implies that the particles asymptotically travel in pairs, the 
lth pair being composed of the (21 - l) th and the 21th particles, and that the asymptotic 
velocities are exchanged between the Ith and the ( v  - 1 + l) th pairs. The relation (1.6) 
concerns the asymptotic distances of two particles constituting a pair. Finally (1.7) 
admits the interpretation that in the scattering of these particles, the pairs behave as 
if they interacted pairwise at a time. 

In [4], under the condition on the initial value of ak that the corresponding Jacobi 
matrix represents a compact Hermitian operator in the Hilbert space 1 2 ,  the system of 
differential equations (1.1) for n=co was studied. It turned out that the results can 
be regarded as a natural extension of those for the finite system. It is then natural to 
try to investigate the system (1.2) for n =CO, and to compare the results with those for 
the finite system, as is the theme of this paper. 

2. Integration and behaviour of the infinite system 

A5 we shall derive below, this infinite system still asymptotically behaves like the one 
composed of free particles, each travelling with a certain constant velocity. Intuitively 
this may be considered as resulting from the existence of the end particles (x, and x2). 
Thus the forces acting on the end particles are such that they make x1 and x2, left of 
xg and x4 respectively, asymptotically move freely. Consequently the particles xj and 
x4, and then x5 and x6 etc play the role of the end particles, and tend to move freely. 

Under the restriction on the initial value of ak that the Jacobi matrix L defined by 

( L ) k , k + l  = ( L )  k + l , k  = ak(0) ( L)j ,k  = 0 otherwise (2.1) 
stands for a compact Hermitian operator in the Hilbert space 1 2 ,  the solution of (1.1) 
for n = cc is given by [4] 

(90 = 9-1 = 1, g k  f 0 ( k  = 1,2,  . .)) 
where Zthk ( - A l  < - A 2  <. . . < O < .  . . < A 2  < A I )  are the eigenvalues of L, 
&(0)/2 x l < k < o c  & ( O )  (&(O)  > 0; k = 1,2, .  . .) is the discontinuity of a certain purely 
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discontinuous distribution function p ( A )  at A = *A,, Rk( t )  = &(O) exp(2Ait) and 
E{,+ ,,,.., k , )  denotes summation over all combinations of k , ,  , . . , kI (EN). 

With the aid of this result, we recognise that 

Xl(t) = x , ( O ) + l n C ~ l ( O ) / ~ l ( t ) l  

since 

XI  = (-1/2) exp(x, -x2) = -2A1 = - 2 P 2 / P 1  = -d’,/P, 
= -d(ln B,)/dt. 

so 

Now, by virtue of the behaviour of P k  (see [4]) we have as t -, +a 

ln[P21-3/P21-l],- -2A:t -In R,(O)- ln(A:-Ai)2 

ln[9,,-,/B2,]-.-2A:t -ln[R,(O)A:]- 1 In(A:-Ai)’ 

l s k s l - 1  

l s k s I - 1  

so 

and 

-p:, = ln[4A:]. (2.8) 

On the other hand as t- ,  -CO, since all the Ak(t)  ( k  = 1,2 , .  . .) and P l ( t )  = 
Elsk<cc &(O) exp(2hit)  tend to zero [4], it follows that 

-f +cc k = 1,2,  . . . (2.9) 

and 

Further, from (1.2) and (2.10), it also follows that 

Xk( t )  * -0 k = 1,2, .  . . (2.11) 
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i.e. 

f f L = O  P i  = +oo k = 1,2, .  . .. (2.12) 
So that as t + -CO, the particles asymptotically stay still at infinity, the kth particle to 
the left of the ( k  + 1)th with the separation Xk+l  - xk = Co. 

3. Comparison with the finite system 

To compare our results for the infinite system with those for the finite system, it is 
desirable to know the phases of the finite system rather than their differences (( 1.6) 
and (1.7)), which we shall derive from the solution for the finite system. 

The solution for the finite system (1.2) is afforded by the expressions (2.2) for 

1, .  . . , v)) are the eigenvalues of the finite ( n  x n )  Jacobi matrix defined in terms of 
the initial value of ak ( k  = 1, .  . . , n - 1) by (2.1), and z { k I  ,..., k,) denotes summation over 
all combinations of k,, . . . , kf taken from the set {1,2,. . . , v} (the number of these 
combinations is yC,). 

The asymptotic behaviour of g k  as t + $00 is formally the same as that for the 
infinite system, so the results (2.5) - (2.8) with 1 = 1, . . , , v hold also forthe finite system. 

The behaviour of g k  as t + -oo turns out to be 

9 2 1 - i ( f +  -~)-R,(O)R,-i(O).  . R - i + - , ( O ) A ( A : ,  A:-I ,  . , A t - r + i 1 2  

k = l ,  . . . ,  n - 1  and (2.3), where hk ( A f l < A f l - l <  . . .  <A2<Al; hk=-hn-k+l ( k =  

x exp[ 2( A + A "y -, + . . . + A t - , + , )  t ] 

P2/(t+ -a) - R,(O)R,-,(O). . . R, - /+ I (0 ) (A~A~- l . .  . A t - / + l ) A ( A t ,  A t - , ,  . . . , A t - f + 1 ) 2  
xexp[2(A~+At- ,+ .  . . + A t - f + l ) t ]  1 = 1 , 2  , . . . ,  U .  

so  

(3. la)  
- 1  

92/-2/92/(t+ -a) - R,-/+~(O)AL+~ n ( ~ t - 1 ~ ~  -A:)') exp(-2h:-r+lt). 
u - / + 2 < k < u  

(3. lb) 
( 

From (2.4) and (3.1), we recognise that 

(3.2) 
(3.3a) PU-I =x1(O)+ln[~-,(0)/4~'-~R,-1+-,(0)1- ln(A;-f+i-Ak) 

P i  = ~ ~ ( 0 )  + ~ n [ ~ l ( ~ ) / 4 2 ' - ' ~ ~ - ~ + l ~ , - ~ + l ( 0 ) 1  - 1 In(At-/+, - A i l 2  (3.3b) 

and 

2 
( ~ 2 1 - 1  = a i /  = -2A , - / + I  

2 2  

u - / + 2 s k s  Y 

u - f + 2 r k = v  

P U - I - P U = In ( 4A : - /+ 1 l = l , 2  , . . . ,  U .  (3.4) 
In these relations, (3.2) and (3.4) are included in (1.5) and (1.6) respectively. The 
relation (1.7) results from (2.7) and (3.3b). 

+ 0 ( I  = 1,2, . . .) it follows from (3.2) that a; + -0 
( k =  1 ,2 , .  . .) (cf (2.11)). Similarly from (3.3) we recognise that Pi++oo  ( k =  1,2, .  . .) 

Now as n(  =2v) +CO, since 

(Cf (2.12)), SO X k ( f ) + f a  ( f+ -oo;  k = l , 2 ,  . . . )  (Cf (2.9)). 
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As forthe distances X k + l ( t ) - X k ( t )  (cf (2.10)), since ~ ~ + , - C Y U = ~ ( A Z ~ _ ~ + ~ - A ~ Z - ~ ) <  
0, we see that for any n (=2v  < CO) 

X2J+l( l) - x2J( t )  - ( a  ;/+I - t + (piJ+l - PiJ)  
+ +CO t+-oo 

while for k = 21 - 1 

x2J( t )  -x2J-l( t )  - - w A  :-/+I) t + - - c O  

++CO n + a .  

So, as far as the relations (3.2)-(3.4) are concerned, each of them suitably translates 
as n + 03 to the corresponding relation for the infinite system. For the relation (1.7), 
it seems that it has no longer any appropriate limit as n + m .  

4. Conclusion 

From these considerations, we can describe the behaviour of the infinite system as 
follows. 

The configuration of the system in the past ( t  + -CO) is characterised by (2.9), (2.10) 
and (2.11). As time evolves, it changes to become the one prescribed by the initial 
condition which imposes (if we adopt the condition that L is an operator of Hilbert- 
Schmidt class, which is stronger than the requirement of compactness) that 

c [(L)j,kI2=2 ak(0)2 
1 Sj,k<CC l c k < o o  

1 
=- exp[xk(o)-Xk+l(o)l 2 l s k < m  

<Co. 

Thus for large k ( k + c o ) ,  the relations (2.9)-(2.11) still hold at t = 0. 

follows that 
The motion of the system as t + +CO is characterised by (2.5)-(2.8), from which it 

xk( t )  + -a C++CO; k =  1 , 2 , .  . . 
t++CO; l = l , 2 ,  . . .  X 2 J + l ( t )  - X 2 J ( f )  + 

X2/( t )  -x2J-l(t) --1n(4A;) t++O3 

+ +oo l+oO 

and 

CY;+ -0 k+m. 

As time evolves from t = -CO to t = +CO, all the particles are moving from x = +a 
to x =  -CO. Focusing our attention on those & ( t )  with sufficiently large k ( k + m ) ,  
they continue to satisfy (2.10) and (2.11) at t = -CO, 0 and +CO. 

It is tempting to consider that even in the infinite system the asymptotic velocities 
are exchanged between pairs of particles, as is indeed the case in the following sense. 
From (2.5), the asymptotic velocities as t + +CC are such that 

CY: < CY: <. . . < a;/ <. . . < 0 
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while as t +  -00, in addition to ( 2 . 1 1 ) ,  we shall now show that 

X d t )  - -%(/+l)(t)  + +o 

. . . < X 2 / < .  . .<x,<x,<o. 

1 = 1,2,  . . . 
i.e. 

To show this, we notice that since Ak(>O) + +0( t + -CO),  

= 2(Ak+, -j +o t + - W ;  k = l , 2 ,  . . .  . 
Then 

%/ - X 2 ( l + l )  = 2(A2/+, + A2li-2 - A2/-1 - A z )  

= A2//A2/ + A2/+l/A2/+1 

+ +O t + -0o-i.. 

Finally, although we have not been successful in doing so, it is hoped to find a 
relation which corresponds to (1.7) and characterises the behaviour of the infinite 
system. 
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